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SECTION 1

INTRODUCTION

In recen t years , increasing use has been made of the Doubly Asymptotic Approximation

(DAA ) [1—3] for the transient response analysis of submerged structures. App lication of the

DAA in conjunction with discrete methods of structural analysis leads to a large se t of

coupled ordinary differential equations (ODE) in time . Such equations are either solved

direc tly in terms of the physical coord ina tes , or indirectly through a dinensionality—

red uction transformation f rom physical to generalized coordinates. This report deals exclu-

sively with the first approach.

The physical coordinates associated with the direct time integration approach are the

response degrees—of—freedom of the structural model (the structural displacements) and the

nodal values of the scattered pressure field at the contact surface (the fluid pressures).

Fluid—structure interaction effects result in the coupling of the fluid pressures and struc-

tural displacements normal to the contact surface (the “wet displacements”) through a matrix

differential equation.

1.1 SOLUTION PROCEDURES

Three general schemes c~n be followed for organizing the response calculations :

• Pressure Elimination Solution. Elimination of the fluid pressure equations results

in a differential system of equations in the structural displacements only; this

system is of third order in time.

• Simultaneous Solution . The fully coupled system Is processed as one entity, i.e.,

• both displacements and pressures are simultaneously advanced through the use of a

fu1ly—4~2j~~ci~ integration scheme.

• Staggered Solution. The integration process is carried out in alternating stages :

the solution of either the struc tural or f luid system is advanced f i r st, then the

other system is solved following a time extrapolation of the coupling term(s) as a

forcing function.

The first approach has the advantage of reducing the number of equations to be solved ,

but introduces unsymmetric coefficient matrices that are fully populated in entry positions

pertaining to the “wet” degrees of freedom. Furthermore , the appearance of third—order (or

higher) temporal derivatives of the displacement coordinates causes numerical difficulties in

the treatment of initial and jump conditions in shock—excited problems. (These difficulties

can be eliminated by passing to integro—differential forms, but then time Integrals of

applied forcing terms must be carried along in the calculations.)

The second approach can be organized in terms of symmetric matrices and does not re-

quire special treatment to account for acceleration—derivative terms . Process ing tines

5 
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ror large—scale problems become rapidly prohibi t ive , even in linear analysis , on account of

the matrix connectivity in troduced by pressure/wet—displacement coupling blocks that may

extend across thousands of degrees of freedom . For example , the initial factorization of the

dynamic coefficient matrix for a model with 5000 structural and 250 fluid equations (a typ—

ical mix) would require roughly 3 hrs of CPU time on the CDC 6600 computer.

1.2 STAGGERED SOLUTION PROCEDURE

The staggered solution scheme consists of splitting the time integration task between

two loosely coupled processors , a f l uid and a struc tural anal yzer , with the interaction

effects being incorporated through an extrapolation mechanism . If certain practical restric-

tions (described in the body of the paper) are met , this strategy offers the important ad-

vantage of preserved program modularity, in the sense that the organization of the structural

time integration package is not sensibly affected . A general—purpose fluid analyzer may be

developed and checked Out as independent of any specific structural code and eventually

“plugged in” as a modular component to interface with any large—scale structural analyzer .

Fur thermore , subsequent improvements made in the f l uid analyze will be essentially trans-

parent to the user , resulting in corresponding gains in e ff ic i~- ncy . Additional advantages

accruing in the treatment of nonlinear structural response problems are discussed in the

section on implementation.

Given the usual proportion of structural to fluid equations (4:1 through 25:1 in three—

dimens ional pr oblems) , the bulk of the computational effort is most likely to fall upon the

struc tural analyzer , which perceives the fluid only as an external force environment. It is

therefore reasonable to expect that the fluid—structure problem can be processed for only a

marginal increment in the cost required for processing the “dry” struc ture only (provided ,

of course, that similar time increments and structural solution strategies are used in both

cases). The price paid for these computational advantages is the fact that satisfactory

numerical stability characteristics are much harder to achieve for the staggered procedure.

No such difficulties arise in the pressure—elimination or simultaneous solution procedures ,

for which the selection of one of the many available A—stable time integration operators

suffices to secure unconditional stability.

The purpose of this report is to examine the fundamental algorithmic properties ——

convergence , stability and accuracy —— of the staggered solution procedure when the fluid—

structure interaction is treated by the DAA. It will be shown that the simplest (conven—

• tional) formulation of th€ staggered procedure for the structure/DAA equations suffers from

severe time—increment limitations due to stability considerations . Such restrictions

e f f e c tively rule out the use of the conventional staggered solution procedure as a general—

purnose method , al though tha t scheme can work satisfac torily in a res tr icted class of

shock—exc ited problems .

6
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The main objective of this investigation is to find ways to extend the range of

applicability of the staggered solution procedure . It happens that a satisfactory stabiliza-

tion of that strategy can be achieved by a judicious modification of the original equations

j  

of motion through a process of augmentation. There are a number of ways in which the fluid

and/or the structural equations can be augmented to produce the desired stabilization , but

onl y one survives if the practical constraint of limiting modifications to existing struc-

tural anal yzers is imposed .

1.3 OUTLINE OF THIS REPORT

In the sec t ion f ollowing , equations of motion that govern a spatially—discretized ,

fluid—structure interaction problem treated by the DAA are introduced . An associated two

degree—of—freedom system is derived and converted to dimensionless coordinates. This system

is time—discretized through application of linear multistep operators and the resulting

integration process is expressed in the conventional staggered solution form . A stud y of the

domain of convergence of the iterated process and of the temporal stability characteristics

shows that this formulation has a limited applicability range because of time—increment

limitations.

The source of instability of the conventional staggered procedure is then explored in

detail. This investigation is carried out by using a time—delayed continuous form of the

extrapolated coupling term (predictor) for deriving a difference—differential system . Exam-

ination of the characteristic equation of this system clearly shows that the onset of in—

stability is caused by the delayed feedback of fluid radiation damping from the f l uid

equation into the structural equation . This result leads us to consider the use of “damping

augmentation” strategies that are often emp loyed in the f ield of con trol theory to stabil ize

systems with dead—time (delay) elements.

Several stabilized formulations are then developed by tailoring the governing equations

of motion in such a way that appropriate damping terms appear in the structural equations ,

the fluid equations , or both. A study of the iterative convergence and temporal stability

of these forms show that they are globally convergent and remain unconditionally stable for

certain extrapolators .

An extensive series of numerical experiments has been conducted with the dual objective

of ver if ying the predictions of the stability analysis and of assessing the global accuracy

of the computed solutions o~ the two degree—of—freedom system. Representative results of

this series are presented . Practical considerations regarding the computer implementation

of the stabilized formulations to treat large—scale problems are then offered ; special em-

phas is is p laced on software modularity requirements. Finally, the main conclusions derived

from the present investigation are summarized .

___ _ _ _  A



SECTI ON I I

GOVERNIN G EQUATIONS

Consider a structure interacting with an acoustic medium through a contact boundary B ,

henceforth referred to as the “we t sur f ace . ” The structure and fluid are spatially dis—

cretiz ed through the application of finite—element and boundary—integral techni ques , respec-

tively. (It is important to note that the corresponding meshes on B are not necessarily

identical.) The resulting matrix equations of motion may be written as

M ii + D ü + = + - I ~ (
S 

+

(I)

M
f~~~

+ P C A a = p c M ~~ (1
T 1

)

where the first set of equations expresses dynamic equilibrium in terms of the structural

displacements , and the second set , the DAA , describes the ~~uid—structure interaction at the

wet surface. (Recall that the number of structural equations is usually much greater than

the number of fluid equations.) In (1), 
~~~
, j

~
, and K are the structura . ~~~~~ damping

and linear (or linearized) stiffness matrices , respectively; u , f and r are the struc-

tu re response disp lacements , dry—structure applied force , and nonlinear residual (pseudo—

force) vectors , respectivel y; p_
S 

= ~ is the scattered pressure vector and p~ 
is the

incident pressure vector , appropriate to the fluid grid on B ; A is a diagonal matrix

embodying elemental areas of the fluid mesh on the wet surface B , M~ is the fluid mass

matrix as determined from an analysis of incompressible fluid motion appropriate to a dis-

tr ib ut ion o f elemen ta l sources on B, ~ is a generally rectangular transformation matrix

that relates structural disp lacements to toe control points of the fluid gr id on B , p

and c are fluid density and speed of sound , respectively, and superscript T denotes

matrix transposition; finally, the superscript dot ( )  denotes temporal differentiat ion .

2 . 1  THE MODEL PROBLEM

The homogeneous linear (or linearized) part of (1) can be expressed as

2 ~ Q ~
+ + =

0 0 ~ PcM f
T 

~!f ~ 
p cA ~ 0

8
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in the following stud y, the structural damp ing term D ü will be systematically neglected ,

as its eff ect on the response is in most cases neg li gible when comp ared to tha t of the f l uid

radia tion damping term TAR . An appropriate two degree—of—freedom problem associated

with the system (2), after setting D = 0 , is

m w + k  w = - a g
S 5

(3)
m
f 

g + pcag = Pcm~w

where m , k , a and m~ are generalized quantities resulting from the projection of M,

K, ~ and 
~~~~~

, respec t ively, on normal coordinates w and g that diagonalize the left—

hand side of (2). The derivation of (3) is presented in Appendix •~~ . We note that (3a) rep-

resents a pressure—excited undamped mechanical oscillator whereas (3b) represents a velocity—

exc i ted pressure—decay equation .

The system (3) can be further reduced to the non—dimensional form

2
~~x + u x = — y

(4)
r +  p y  x

through in troduc tion of the dimensionless variables

x = w/i , y = g / ( pc t )

2 2 2
= m /(pia) , a = k i /(~m c  )

(5)
p = /(~~ f

) = P t a/m
f

( )  = ~/3t  , t = c tft

i;t Eqs. (5), 1 denotes a characteristic length of the problem , e .g . , the radius of a sub-

merged cylinder or sphere ; ~ is a “buoyancy ratio ” (structural mass divided by di sp laced

f l uid mass) ,  a is a reduced vibration frequency, and p is a generalized—pressure decay

exponen t. Note that the dot superscript has been redefined in (5d) to denote differentiation

wit h respe ct to the d imensionless t ime t , ra ther  than physical time t.

9
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2.2 TEMP ORA L DISCRETIZATION

We sha l l  cons ider the use of impl ic i t , one—derivative linear multistep (LMS) rneth~ds
[. to effect the time dlscretization of (4). For a constant step—size h = 1~T , an rn—step

method can be presented in the compac t form

Z 6 Z  + h Z (6)
n n n

where  z stands for  a scalar or vec tor state var iable , the subscript n is the time station

index , ti is the general ized time step ~h (
~~ 

being a method coefficient), and the his-

tor ica l  vecto r hZ is a linear combina tion of m pas t sol utions:

= 

:~~I
i 

Zn_ i  
— h 

~n—i~ 
( 7 )

Specific LMS integrators are characterized by the coe f f i c ien ts ~ , a. and 
~~

. . For example ,

the trapezoidal rule (in = I) has = — l  ~ = = 0.5.

For reasons to be justified later , we in trod uce a 
~~~fl of LMS integrators

xx ~~x + h  ,~~~~~ =~~~ hn x n  n x x
(8)

y ô y  + h ~ , ti
n y n  n y y

to treat the reduced equations (4). The resulting algebraic system is

(1 + 5 2a2 ) x = + 1 (h’~ +
(9)

(1 + tl
y 

ii) = x
1~ — 

~i h~

The secondary state variables , veloc ity 
~ 

and pressure integral y , ar e calc u la ted f rom

the integrators (8), i.e.

x
x = (x — h ) / 5n n n x

(10)

y = h~
’ + ~

Eqs. (9) and (10) form the basis for t e  an:lysi: of the conventiona l staggered solution

procedure.

10
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2.3 RANGE OF NON—DIMENSIONAL PARAMETERS

The time—discretized system (9) contains four non—dimensional parameters : ~ , a , p

and h . The first three embody spatial characteristics of the problem whereas h intro-

duces the effect of the time integration stepsize . It is of interest to the forthcoming

discussions on the app licab ility of various implementations of the staggered procedure , to

exhibit typ ical ranges assumed by such quan tities . Th is inf orma t ion is collec ted in Table 1.

For ~ , to , and p , two limit conditions and an illustrative case are shown . The

cavity condition is the limit of modal motions heavily dominated by the inertia of the fluid ,

viz, low—frequency motions of a very thin submerged shell. The ~ mode condition is

realized by structural motions that do not interact with the fluid , such as torsional modes

of structures of revolution. The illustrative problem of a submerged spher ica l  shell is of

interest because this is one of the few geometries amenable to exact analytical modal treat-

ment , as discussed in Appendix B. Ranges quoted for the dimensionless time increment h =

cttt/Z are tabulated according to the temporal characteristics of the excitation , which

determines the energy—spectrum characteristics of the response. 

- T__ _ . ~~~~~~~~~~~~~~~~~
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TABLE I. Range of Non-Dimensional Parameters

Limit Cases Illustrative Case

Parameter Cavity Dry Structural Mode Submerged Spherical

Sheil a
in — O , k - — 0 m~~~O, a - Os s f

b 
~~~~~½ 2

a 0 �O O t o ...pce n

_ 2
O ...5e to~~~ pen

p 1 ind et. l t o n + l

Shock—Excited Probleinsc Structural Dynamics

Early_Timed Late_Time
e Problems~

Response Response

h 0.01—0.1 1— 100 >>1

a 

~ 
=~~ /~ = ra tio of shell and f l u id  dens it ies , ~ = c / c  = ratio of sound speeds In

shell and f l u id , e = thickness—to—radius ratio , n = hi ghest circumferential wave
number retained. These equations are derived in Append ix B , where numerical values
of a , ~ and p are tabulated for a particular combination of 5 , ~ and e.

b k tends to zero faster than m .

C Problems characterized by wave propagation effects.

d Period dur ing which shock wave starts to envelop the structure (i < 1) ;
charac ter ized by hi gh—fr equency structural motions , hi gh radiation damp ing,
rela tivel y smal l  hydrod ynam ic iner t ia forces .

e 
‘eriod charac te r ized by low—freq uency structural motions , dominan t hydrodvnamic
iner t ia , and low radiation damping (usually t ~ 10).

Problems chara c t er ized by low—fr equency motions throughout.

12
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SECTION I I I

PRESSURE EXTRAP OLATiON FORMULATION

The simplest formulat ion of the staggered scheme suggested by the forma t of Eqs.  ( 9 ) ,  is

the pressure extrapolation (PE) fo rmula t ion , which may be described as follows . Assume tha t

solutions up to the (n—l)th time station are known. We first predict the pressure S’~~ 
at

t
n insert this into the right—hand side of (9a), solve for  the struc tural d isplacemen t x~

ob ta in the velocity * from (lOa), insert this into (lOb) and finally solve for  the pressure

This corrected value may be used in an iterative setting if desired . We proceed now to

analyze the iteration convergence and temporal stability properties of the PE formulation.

3.1 ITERATION CONVERGENCE

Us ing k as an iteration cycle index , the itera ted PE scheme may be wri tten

E ~
(k) 

= -

~~~~~ 

h~ 
.(k—l) + b

k = 1,2 . .. (11)
E = (x (k) 

— h
x ) / ö  + by n n n x y

where

E = 1 + 8
2 

~
2 

~
2 

= a2 h
2
/~

E = 1 + 8  ~~ , ‘~ = p h
y y

(12)
x = h/~

b = hX +~~ h
x

, b =
x n x n y in

The initial ~,(O) 
= may be obtained from a simp le pred ictor such as

. (O) 
— (1 + ~~~ 

~
‘n—l 

— ‘
~
‘ 

~
‘n—2 

(13)

where y is an extrapolation parameter (actually , extrapolation corresponds to y > 0 . and

in terpola t ion to y � 0)

The iterative scheme (11) can be recast into the standard form

(k) 
= R (k—l) + b (14)

13
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where ~
T 

= (x ~~) ,  b embodies terms independent of k , and the i t e ra t ion  m a t r i x

E 0 —l 0 8 h x  0 Ex x g~~h~ y
— 

E E (15)
1 E 0 0 1

y

The iteration (14) converges if and only if the spectral radius K of R (largest eigen—

value modulus) is less than 1. Since K(~~) = 8
x X/ (E

x 
E
y
) , the convergence cond ition is

= h/~ < (1 + 8x 
~2) (1 + 8

y 
‘V )/ 8

~ 
(16)

The right—hand side of (16) is minimized for modal motions with II -* 0 , ‘V 0 , in which

reads

x < 1/8 (17)

The structural equations will normally be treated with an A—stable integrator to account for

the wide frequency spectrum present in most discrete models . But for all A—stable LMS

methods, 8 lies in the range of ½ to 1. Consequently ,

x = h/~ < 2.0 (18)

is the best that can be achieved by using the trapezoidal  rule (8  = ½) in (8). Note that

the convergence conditions are not only independent of the pressure predictor (as one would

expect of a linear system), but of the historic term composition of the integrator pair (8)

as well.

3.2 TEMPORAL STABILITY

The numerical s tabi l i ty  of the PE formulat ion has been studied for  a va r ie ty  of LMS
integrators, assuming the two—step predictor (13), and a fixed number (k) of passes per

time step . No details of the analysis will be given here , Inasmuch as the conventional

staggered procedure is not recommended for  general use . Only one i l lustrat ive example and

some general observations will be offered .

The stability region of the PE formulation is always x—bounded , i.e., parameters a

and p play no role in the analysis (in more precise terms , the wors t combina t ion is

w = p = 0) , and neither does the f lu id  integrator (8b). For a specif ic  s t ruc tu ra l  inte-

grator (8a) and the one—parameter predictor (13), the stability regions can be conveniently

14
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displayed in the (~~x ) plane . Figure 1 shows those curves fo r  the  t rapezoida l  ru le .  The

largest  s table x is 4 , which can be a t t a i n e d  f o r  the one—pass solut ion (k 1) if

y = —
~~ (the predicted pressure value is the moan of the last two values). If the process is

• iterated , the peak of the stability region is educed ; and as k -
~ the s tabi l i ty  limit

approaches the predictor—independent value (18).

• It should be stressed that  a time increment limited by a x = h/F~ of order 2 to 4 is

unacceptable for  a general—purpose in tegrat ion package. The constraint  can be p rac t i ca l ly met

onl y in a limi ted class of problems , such as .n e  early—time shock response of submerged s t ruc—

tures.  If the response is dominated by low—frequency s t ruc tura l  motions , however , that  m ere—

ment l imit  is intolerably small; so small , in f ac t , that  computational error accumulation and

computat ion tine become cr i t ical .  (The largest stable x found by the authors is 8, which

requires  the implementation of a f a i r ly elaborate t ime—advancement procedure.)

3.3 OBSERVATIONS

The detailed stud y of the range of convergence of the i terated PE formulation can be

j u s t i f i e d  by the following considerations.  Suppose we had found that the iteration (11) con—

verges for the ent i re  range (or at least a wide range) of parameters.  The converged solution

would then be identical to tha t furnished by the f ully— implici t scheme result ing
X.hlI

UNSTAB~

/~ 
\
\

\

STAB~ 

2 

~
INTERPOLATION .0_f.. EX1RAPOLATION

Fi gure 1 S tab i l i t y  Limit of the PE Formulation (11) Treated by the
Trapezoidal Rule and the Two—Step Predictor (13) as a

Function of the Number of Passes (k) per Time Step
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Figure 2 Effect of Iterations on Stability
Characteristics of Staggered Procedures

from the simultaneous solution approach , as sketched in Figure 2. Under such assuptions ,

the stability region of the iterated FE formulation must approach that of the fully— implicit

scheme . The l a t t e r  can be made unconditionally stable by selecting a suitable A—stable LMS

method . Iteration would then provide a simple strategy for transmuting the one—pass , con-

ditionally stable semi—imp licit procedure into an unconditionally stable scheme of greater

accuracy; this strategy might have led to a potentially favorable tradeoff between iteration

cost and the ab i l i ty  to u t i l i z e  larger time steps.

As increasing k does not a c t u a l l y  improve s t ab i l i ty  to any s igni f icant  extent , it

appears tha t  t he re  is no point in i t e r a t i n g  at all if the FE fo rmula t ion  is used . (In

l inear  problems , an i t e r a t ion  cycle costs essential ly the same as one advancing step , but

hig her accuracy  can be generally achieved through equivalent  reductions in the s t eps ize .)

F i n a l l y ,  it should be noted that  FE i t e r a t i o n  can be made to converge over the entire

feas ib le  domain of parameters  by the appl ica t ion  of a Jacobi acceleration s t ra tegy [4 ,~ 4.3.1)

to  (11) . The r e s u l t i n g  i t e ra t ion  process is v i r tua l ly  identical , however , to those ensuing

from s t a b i l i z a t i o n  of the or iginal  equat ions  (4)  by augmentation , as described in la ter

sec t ions .

16
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3.4 VELOCITY EXTRAPOLATION PROCEDURE

An a l terna t ive  fo rmula t ion  of the conventional  staggered solut ion procedure can be
based on velocity ex t rapola t ion  (yE) applied to the f lu id  equation (9b) .  The a lgor i thmic
propert ies  of this formulation are identical to those of the FE formulat ion , and need not
be discussed further.
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SECTION IV

SOURC E OF INSTABILITY

This section probes more deeply in to the underlying causes of the itera tion d ivergence

and temporal stabili ty limitations exhibited by the conventional (FE, yE) formulation of

the staggered solution procedure . First we examine the root locus diagram of the character-

istic equation pertaining to the fully— implicit formulation of the model system (4), no t ing

its essen tially stable character. The FE solution procedure is then cast into a

d i f f e r e n t i a l — d i f f e r e n c e  (DD ) system tha t  abst racts  the time integration method . The analy-

sis of the characteristic equation of the DD system shows clearly that the x—limited

instability is, as expected , caused by the feedback effect of the extrapolated pressure term

into the structural equations of motion. This analysis technique has the important advantage

of providin3 results that are independent of the intrusion of a particular time integration

scheme; the effect of the latter is, in fac t, of secondary importance. Interpretation of the

results in terms of a con trol process provides direct insight into techniques for the stabil-

ization of the staggered solution procedure at the differential equation level; such tech-

niques are exploited in the following section.

4.1 CHARACTERISTICS OF THE FULLY—IMPLICIT FORMULATION

We obtain the homogeneous form of the fully—imp lici t model sys tem by transferring the

coup ling terms in (4) to the lef t—hand sides , which y ields

= 0
(19)

= 0

Laplace transforma tion of these equa tions wi thout cons idera tion of initial cond it ions then

yields

2 2
~~s +ta s X(s)

= 0 (20)
—s s + p Y(s)

in which X(g) and Y(s) denote the transforms of x(t) and y( t) , respectively. The

associated characteristic equation is therefore

(~ s
2 
+ a

2
) (s + p) + ~

2 
= o (21)

18
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Fi gure 3 Root Locus Diagram of the Fully—Imp licit System (19)
in the Lap lace—Transform—Variable Space

The root locus diagram for  (21) is shown in Fi gure 3. Because all physically relevant

branches are on the left—hand side (Re(s) �0 , (19) are inherently stable equations . Con-

sequen tly, a stable numerical solution is guaranteed if the time integrator applied to (19)

is A—s table.

4.2 CHARACTERISTICS OF THE FE FORMULATION

A differen tial—difference (DD) equation [5) for the FE formulation can be obtained

by expressing the two—step predictor (13) in a delayed continuous form ,

~~(t) = (1 + y) ~~(t - h) - y ~ (t 
- 2h) (22)

This f o r m  is app lied to the model system (4) to obtain

~ ~ (t) + ~
2 
x(t) = - (1 + y) jr(t - h) + y ~ (t - 2h)

(23)

+ p y ( t )  k ( t )
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which is the DD form associated with the single—pass PE formulation. Note that (23) is

independent of any time integration scheme . Its characteristic equation in the Laplace—

transform variable s is obtained following a procedure identical to that used to obtain (21):

2 
+ a

2
) (s + p) + 

2 
[(1 + y) e

_Sh 
- y e

_25h
1 0 (24)

In control theory , the identifier dead—time element is often used for terms such as e
5h

and e
_ 25h 

(see , e . g . ,  [6] ,  p.  284) ,  w h i c h  resu l t  f rom Lap lace— transormation of tine—delayed

terms . I t  is generally acknowled ged tha t  the occurrence  of such elements in control  1oops

has a destabilizing effect.

In the limit of vanishing stepsize h , (24) approaches the fully implicit equation (21),

which is stable. For a finite h, it can be shown tha t the cri tical combina tion of param-

eters pertaining to the stability of (24) is a = p = 0, in which case (24) reduces to

— sh —2sh
~~s + ( l + y )e — y e  = 0 (25)

Equation (25) shows that stability is characterized in terms of three parameters: the

“buoyancy ratio” ~ , the dead—time constant h (integration stepsize), and the extrap-

olation parameter y . The critical component is, of course, h , which can be viewed , f rom

the DD—form standpoint , as the sampling rate with which pressures are evaluated and f ed back

in to the struc tural analyzer by the extrapolator (22). The destabilizing effect of the dead—

time elemen t can be inves tigated by recasting (25) in the form

l+G(s) = 0 (26)

where

G(s) = ~~~~~
— [(1 + y)  e 5h 

— 
~ 
e~~~

’
~j (27)

The most expedient approach for investiga ting the ex istence of uns table roo ts

Re(s) > 0 of a complex transcendental equation such as (26) is due to Nyquist [7). For

the special form (26), Nyq uis t ’s criterion can be stated as follows: let the Laplace—

transform variable s encircle the entire right—hand plane Re(s) > 0 by vary ing s =

.2j v = — 1) from v = — to + = , and f i n d  the angle of G (j v )  in the polar co-

ordinate system [~ G(s)~ , ~ G(s)J that satisfies

~ G( s)  — IT , 0(5) � ) (28)

20
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Application of this criterion to (27) provides the two conditions

(1 + y ) cos vh — cos 2vh = 0

(29)

~ vhJh (1 + y) si n vh — y sin 2vh

For the special case y = 0 , i.e., using the last pressure solution as the predicted value ,

(29) gives the stability limi t

x h/~ � 11/2 (30)

Figure 4 shows the stability limit in the (x, y) plane as calculated from (29). The

destabilizing effect of the dead—time element is now apparent. It must be stressed again

that the stability boundary shown in Figure 4 applies only if an integration scheme of

infinite accuracy (such as an analytical integration or a nontruncated Tay lor ser ies algori thm)

is used to solve the system (23), and that the boundary is per tu rbed by the intrusion of a

differenc e time integrator. For examp le , the use of the trapezoidal rule as the structural

integrator increases the stability domain , as can be ded uced f rom a compar ison of Figures 1

x-hI~

~~~~

_

_ _

INTERPOLATION EXT RAPOLAT ION

Figure 4 Stability Limit of the D i f f e r e n c e — D i f f e r e n t i a l  Form (24)
of the FE Formulation with the Two—Step Predic tor (22)

• ~~~~~~~ ~~~•JJ_ __ ~~~



and 4; on the other hand , the ust~ of the backward Euler method (not shown here) has a detri-

mental effect on stability.

4.3 SUMMARY OF MAIN FINDINGS

• The x—bounded stability of the conventional (FE , yE) procedure is due to

the dead—time (delayed) pressure feedback (22) into the structural equations

(23). This process can be viewed (in control theory terms) as a sampled—

feedback system, in which the pressure f eedback is delayed by a “hold”
(dead—time interval) equivalent to the stepsize h. This representation is

ill ustra ted in the block diagram of Figure 5.

• The most commonly used strategy for  stabi l ization of a sys tem tha t includes

dead— time components consists of introducing a series of compensating

elements that reduce the bandwid th of the sys tem ’s freq uency response

(see, e.g., [8] p. 118). These stabilization techniques essentially amount

to the introduction of damping into the feedback loop .

• In the fully—imp licit solution procedure , damping is inheren tly present by

virtue of the energy radiation term (y) in the model system (19) on the

left—hand side. The effect of the radiation damping on the structural

response roots can be readily appreciated by examining Figure 3. The

structural equation (23) of the FE procedure , however , contains no

homogeneous damp ing term . The addition of artificial damp ing to the

structural equation (23a) and/or the pressure equation (23b) in amounts

sufficient to stabilize the solution procedure is likely to have cata-

strophic effects on solution accuracy . We are therefore motivated to

attemp t the restoration of sufficient damping to achieve overall stability

through appropr iate rearrangement of the original governing equations .

22
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Figure 5 Control Loop Represen tation of the Pressure
Extrapolation Procedure (24)
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SECTION V

STABILIZATION

The foregoing results  clearly suggest that  the staggered solution procedure may be

stabilized by the addition of damping terms into the left—hand side of the governing

equations of motion. As the use of artificial damping is ruled out by accuracy considera tions ,

it follows that the governing equations must be tailored in such a way that homogeneous

damp ing terms either appear in the structural equations , or be added to the fluid equations,

or both. We now proceed to describe three stabilized formulations generated through such

“damping augmentation” techniques.

5.1 PRESSURE-INTEGRAL EXTRAPOLATION (PIE) FORMULATION

The homogeneous portion of the structural equations for the fully—implicit solution

procedure (19) effectively exhibi ts damp ing due to the simultaneous veloci ty (~) feed-

back from the coupled pressure equation (19). On the other hand , the structural equation

for the PE formulation (23) is excited by a time—l~gged velocity feedback; a destab i-

liz ing e f f e c t occurs because of the delayed energy dissipation in the feedback loop (cf.

Figure 5). We can correct this situation by eliminating the time—lagged velocity feed-

back; this is accomp lished mathematically by combining (4a) and (4b):

~~~~+w
2
x = -

~~~~ = -~~~~- p y )  (31)

which, upo n tr ans fe r ring the damping term (*) to the left—hand side, becomes

= p y (32)

The solution procedure based upon (32) along with the original pressure equation (4b) will

be called the pressure—integral extrapolation (PIE) formulation , inasmuch as the pressure—

integral y is involved in the prediction process .

5.2 DISPLACEMENT EXTRAPOLATION (DE) FORMULATION

Stabilization can also be achieved by augmentation of the fluid equation so as to

increase the pressure decay rate in the homogeneous system. Qualitative2y speaking, this

strategy works as long as the staLility “marg in ” of the modi f ied  pressure equation over—

whelms the destabilizing effect of the structural equations. The modified pressure

equation is obtained by the substitution of (4a) into the time—differentiated (4b):

2
~i + p ~ = x = — (y + a x)/~ (33)
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which can be rearranged to form

+ (p + l/~) ~~ 
= - x/~ (34)

The solution procedure based upon (34) along with the original structural equation (4a) will

be called the displacement extrapolation (DE) formulation.

5.3 OTHER FORMULATIONS

The three formulations of the model problem described so far are collected in Table 2.

It turns out that additional , more compl icated , formulations may be constructed. As these

have not been found to possess any particular advantage over the two preceding formu lations,

they will  no t be discussed here.

TABLE 2. Model Formuiations for Staggered Solution Procedures

Extrapolated
Formulation Model Equations

Quantity

Pressure .. 2
~~x + a  x — y  y

Extrapolation
(PE) y + p y = x

Pressure—Integral ~ + x + a~ x = p y y
Ex trapolation

(PIE) ~~+ p y  = x

Displacement x + a
2 x = — y x

Ex trapola tion 2(DE) y +  (~~+~~) y = _ ~~~— X
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SECTION VI

ITERATION CONVERGENCE OF STABILIZED FORMULATIONS

The iteration convergence properties of the stabilized formulations derived in the

foregoing section may be studied with a technique similar to that used to analyze the

iterated FE scheme (11). The convergence conditions are collected in Table 3.

It is easily shown tha t the spectral rad ii for  the two augmen ted schemes are less than

unity over the entire feasible domain (0 to + ) of the parameters x , 0 and ~ . The key

significance of this result is: if the solution is iterated to convergence at each time

step, the solution of the fully—implicit scheme is recovered (cf. Figure 2). With such con-

vergence guaran teed , we have now at our disposal a feasible computational strategy by which

unconditional stability can be attained within the basic organization of the staggered solu-

tion procedure .

TABLE 3. Iteration Convergence Characteristics of Staggered Solution Procedures

Spec tral Radius , K , of Iteration Matrix
Formulation Iteration converges if K < 1.

FE 8x x/I(1 + 8
2 
0
2) (1 + 8y ~~~

PIE 8
y 
8x x ‘~/ E ( l  + 8

y ~~~ 
(1 + ~ + ~

2 ~2)J

DE ~ 
~2 / [( l  + 8

y ~ 
+ 8), x) ( 1 + 8

2 
0
2)]

6.1 SELECTION OF A PREDICTOR

A wide variety of predictor formulas can be used in the practical implementation of the

stabilized procedures. The ideal formula should be able to provide satisfactory extrapola-

t ion accuracy for  physically meaningful response components without jeopardizing the temporal

stability characteristics; this is indeed a delicate compromise. The following considera-

tions are aimed at restricting the class of admissible formulas to predictors that exclude

“historical derivatives”. A predictor that includes derivatives of past solutions intro-

duces large extrapolation errors in both high—frequency structural response components

(12 > > 1) and rapidly—decay ing pressure response components (‘V > > 1) . Table 3 shows

that , as ei ther x ‘V or x ~2 becomes large , the corresponding spectral radii approach

u n i t y .  On the other hand , for low—frequency components , i.e., as either x or ‘V and/or

12 tend to zer o, all spectral radii approach zero . This means that extrapolation errors

committed for “noise” components of the response (i.e., those with large ‘V and/or 12 ) will
decrease very slowly with increasing iterat ion index.
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j We therefore restrict our considerations to predictors that are less prone to “exci te”

noise components. The following three—step, two—parameter family can be considered suf-

f i c ient for our envisioned appl ica t ions :

= [(1 + y
1
) (1 — 

~~~ 
+ ~ y2 J zn_I

— ((1 — + ~ ~~~ + 
~2 

z~~ 3

where z stands for the solution—state term being extrapolated . Special cases of (35) ate

listed in Table 4.

6.2 SINGLE-PASS STABILIZED PROCEDURES

The difference equations for the single—pass PIE formulation are Ecf. (T2)]

E
x ~~~~ 

= 8~~ x ‘V 
(0) ÷ (1+ 8

~ 
x) h

X + 8x h
(36)

E = 8 (x~ ’~ — h15/8 + h~
’

y n y n n x n

where is predicted by means of (35),

E = l + 8 X + 8 2
12
2 (37)

TABLE 4. Predictors Considered for the Present Study

Case Parameters Order of Accuracy

I 
~1 

= 
~~2 

= 0 Zero order

II 
~l 

= 1/2 , y2 
= 0 Improved zero—order

III 
~l 

= 1, 
~~2 

= 0 First order

IV 
~l 

= ~~ y
2 

= 1/2 Improved first order
a

V ~~ 
~2 

= — 2 / 3  Lease—square fit

a
~~i5 formula is the basis of the widely used Houbolt integrator (9) 

~~~~~~~~~ _ _ _ _ _ _ _



and E~ is given in (12b). The temporal stability of (36) may be examined by seeking a

non tr ivial  solution of the form

z = X z (38)—n —n—l

where z = (x , x, ~ ,

and requiring a bounded solution for (36), viz,

I A~~~ � l  (39)

Difference equations similar to (36) may also be obtained for the DE formulation. Evaluation

of the stability condition (39) for various time—integrator/predictor combinations leads to

tedious algebraic manipulations (Appendix C). Table 5 summarizes the results for the single—

pass implementation of the formulations listed in Table 2.

TABLE 5. Stability Characteristics of Single—Pass Solutions

Formulation Stability Properties

Pressure Extrapolation (PE) x < 4 for trapezoidal rulea

Pressure Integral Uncondi tionally stableb for
Extrapolation (PIE) predictor cases I, 11c

Displacement Uncond itionally stableb for
Extrapolation (DE) predictor cases I, 111c when

trapezoidal rule is usedd

a
see Figure 1.

b
~ Uncondit iona 1ly stable” means temporal s tab i l i ty  for  any feas ib le
combination of physical parameters and in tegra t ion  s tepsize.

CSee Table 4.

dAllowable pred ictors depend on integration method used .
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6.3 OBSERVATIONS ON SINGLE—PASS SOLUTION STABILITY

The sing le—pass stability properties listed in Table 5 account for the combined effects

of the predictor and the time—integrator. The results indicate that the two augmented formu-

lations are capable of delivering stable single—pass solutions provided that the extrapola-

t ion acc uracy is suitabl y restricted . Such restrictions are , in general , affected by the

integration method . For example , application of the trapezoidal rule to the DE formulation

limits the extrapolator accuracy to first order (case IV of Table 4), whereas the application

of an A—s table backward—difference scheme allows the use of all of the predictors listed in

Table 4.

We recall that the two stabilized formulations can , if itera ted to convergence , attain

the unconditional stability of the fully—implicit solution procedure (cf. Table 3 and Figure

2), regardless of the choice of extrapolator. This observation raises again the issue of

finding a cost—minimization compromise between a single—pass solution process with small

time increments and an iterated solution process with larger time increments. A resolution

of this issue must await the accumulation of experience in the application of these new

techniques to actual linear and nonlinear fluid—structure interaction problems .

Finally, it should be mentioned that stability analyses of the differential—
d i f f e r e n c e  eq uations per tain ing to the sing le—pass PIE and DE formulations were also per-

formed using integral—transform techniques similar to those used for the PE formulation .

These analyses prov ided valuable ins ight into the sensitivity of the stability character-

istics to the various parameters appearing in the model formulations . The results will not

be repor ted here , however , because of the length and complexity of the algebraic manipula-

tions involved .
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SECTION VII

NUMERICAL EXPERIMENTS

A series of numerical exper imen ts was conducted wi th dual objec tives: to ver if y the

predictions of the convergence and stability analyses , and to assess the g lobal accuracy

of the staggered solution procedures. We have adopted a direct accuracy assessment over an

analytical accuracy analysis , as the former provides an overall (global) measure of accuracy ,

which results from the combined effects of integration algorithm and implementation form [10],

as well as extrapolation process. The accuracy measure chosen for the present study is

IN 2 N 21 1/2
C = E(

~ 
— z~) / E(z~ ) I (40)

Li=1 1=1 J

where the superscripts ( )E and ( )C denote the exact and computed solutions at the dis-

crete time station t = t . , respec tively, and N is the total number of time steps taken

to evaluate ~ . The exac t solutions were ob tained by using the character istic roo ts of

the fu l ly—imp licit procedure (21) and apply ing the initial condi tions

x(0) = (~
*(O) = 1

=

These values produce reasonably scaled response h istories for  all three response var iables

of interest.

A number of imp lici t , one—derivative , A—s table LNS methods were used for the numerical

solution of each of the (4), among them being the trapezoidal rule and the backward—

difference operators of Park [11] and Gear [12]. In the results to be presented here, the

trapezoidal rule was used to advance the structural response while the Park three—step

method was app lied to the solution of the fluid equation.

Error comparisons after 20 steps were made for the structural displacement x(t) and

velocity *(t) as well as the fluid pressure ~‘(t) ; however , only the disp lacemen t resul ts

will be shown. Accuracy assessments were carried out for the parameter range

1 � ~ < 10 , 0.01 � 12 � 1.0 , 0 .0001 � ‘V � 0 .1 ,

wi th the results being relatively insensitive to ‘V . For this reason , compar isons are

shown here only for ‘V = 0.1, which value usually produced the greatest error .
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Figure 6 shows a comparison between the pressure integral extrapolation scheme , deno ted
by ~~~~ , versus the disp lacement extrapolati ’n scheme , deno ted by ~

DE 
. In each case a

two—step standard linear extrapolation method (case III of Table 4) was used. Although the

PIE solution displays superior accuracy , this séheme violates the practical requirement

(justified in the following section) that the structural equations be left unchanged. It is

therefore important to show that the accuracy of the DE scheme can be improved without

incurring a substantial increase in computation time . Two immediate ways of accomp lish ing

this objective are: the use of a three—step extrapolation method (case IV of Table 4),

and the performance of one iteration on the fluid equation solution . The latter effectively

amounts to an additional half—pass through the solution strategy .

As the integration of the structural equations normally con trols the computa tion time

in large—scale problems , this addi tional itera tion can be carried ou t w it h a modes t increase

in the total run cost.

The resul ting improvemen t in the accuracy of the DE proced ure is shown in Figures 7 and

8, where the f i r st subscript indicates whether a two—step or a three—step extrapolation

method is used and the second subscri p t deno tes the number of itera tions made on the f l uid

equation. Hence ~
DE is identical to x~

)E 
in Figure 6. As can be seen, the solution

accuracy is more sensitive to the extrapolation scheme used; however , the val ue of app lying

one ~teration to the fluid equation is also apparent. Similar accuracy improvemen ts were

observed fo r  the veloci ty and pressure components of the solution .
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SECTION VIII

IMPLEMENTATION CONSIDERATIONS

Thus far we have concentrated on stabilization of the staggered solution procedure; we

have succeeded in develop ing several stabilized forms of the two degree—of—freedom system (4).

Appl ication of the two formulations of greatest interest to the original matrix system (1)

provides the equations shown in Table 6. Before selecting one of these formulations for

implementation in a fluid—structure analysis code , it is necessary tha t we d iscuss the

prac tical implications associated with such a decision.

If there were no a priori constraints with regard to software development , i.e., the

program developer had complete freedom to construct both the structural and fluid analyzers

f r om scra tch , the overriding selection factor would probably be the accuracy charac teris tics

disp layed by each formulation . As it is, there now exis t many large—scale linear and non-

linear structural analyzers that incorporate capabilities for transient response analysis.

TABLE 6. Matrix Implementation Forms for Stabilized Procedures

Formulation Implementation

Pressure Integral M U + (D + p c T A T
T) U + K u = f + r

Extrapolation (PIE)

T A (E’ - ~ c 
.1 ) + ~ c T A c

’ A

A~~~-4 - p c A M ~~~A~~~= p c A ( T
T
~~~- ü

1
)

Disp lacement M u + D ~~i + K u f + r - T A (~~+~~~)
Extrapolation (DE)

(A M
f

1
A +  A A) 

~~~
= - p  c A ii

t

-G I
- p c A M  A Z

4 - p c  A M G 
~
_i 

~T~~1 + r - D ~~~- Ku )

where M
G 

c
T (TT M T )

_l
C , C T T

T

Inspection of Table 6 reveals that only the DE fo rmula t ion  has no impact upon the

s t ruc tu r a l  equat ions  of motion , while the PIE formula t ion  (as well as the other , more com-

p lica ted , formulations) requires the addition of a damping term , p c T A T
T 
, to the lef t—

hand side of the structural equation . This term can be expected to have an adverse effect
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upon the sparseness characteristics of the dynamic coefficient matrix [the multi—degree—

of—freedom analog of E in Eqs. (11) and (36)], because each fluid boundary element on 
I

the contact or “wet” sur f a ce B w ill normally overlap several structural elements . Addi-

tional nonzero coeff icien ts then appear ou tside the “p r o f i l e” of the structural stiffness

matrix in entry positions pertaining to the wet structural disp laceme n ts on B. As ma tr ix

connec tiv ity characteristics are generally con trolled by the structural grid information ,

extensive and expensive software modifications would be required to include such a damp ing

tern in existing “dry—structure ” analyzers .

For the analysis of linear structures , a general—purpose , stand—alone integration

package based on available A—stable LMS methods could be built for the PIE and other

formula tions , which would accept , as input data, preprocessed matrices assembled by existing

linear structural analysis codes (with, perhaps , some restrictions on sparse—matrix storage

formats). However , for  struc tures exhibi ting nonl inear behav ior , such an under tak ing would

necessi tate the coup ling of the nonlinear solver with the dedicated integration package to

prov ide con tinuously updated information in the form of factored matrices , pseudo—force

ve ctors , and the like. In this case, the driving considera tion would cer tainly be preser-

vation of the autonomy of tile structural analyzer , a restriction that precludes the use

of either the PIE or other forms.

An addi tional argumen t tha t reinforces this conclusion is the fac t tha t the DAA is

only the lowest—order member of a family of surface interaction approximations [3]. The

nex t member of tha t f amily is character ized by a second—order matrix ODE that would rep lace

(ib). The inclusion of a higher derivative of the sca ttered pressure has the e f f e c t of
add ing widely—connected matrix terms to both the damp ing and stif f n e s s  matr ices in the
structural equations if the equivalents of the PIE and other formulations are adopted .

In summary, it seems clear that the displacement extrapolation formulation is the

only stabilized procedure that satisfies the practical requirements of modularity and

avoids the proliferation of special—purpose versions of existing structural analyzers.

t
The fluid discretization can be much coarser than the structural discretization because
the calculation of spatial displacement gradients is only required for the structural
model in order to obtain strains and stresses.

34

p

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - - - - —- - - - ~~~~~-._. —~~~~~~~- -•- -~



SECTION IX

CONCLUDING REMARK S

The original goal of this investiga t ion wa s to f ind an op timal implementation of the

staggered solution strategy for the structure/DAA equations , with the model equations(3)

or (4) as a point of departure. It was hoped that such an implementation would disp lay

adequate stability and accuracy properties to provide a suitable alternative to the fully—

implicit (simultaneous—solution) approach , but without the computational drawbacks of the

latter. Although that goal was attained beyond our expec tations , the study guidelines had

to be frequen tly redefined along the way.

It is a common attribute of intricate research projects that essential ingredients of

the problem , i.e., those aspects crucial to success or failure , are seldom recognized in

advance. The work reported here is no exception. An extensive initial series of parametric

studieE aimed at extending the stability limit of the conventional staggered solution

procedure failed to yield satisfactory results. When attempts to introduce artificial

damp ing terms proved f r uit less , and when we were seriously consider ing the adop tion of

exp licit integration methods , the augmenta tion concep t was tried , which led to the deri-

vation of the PIE formulation. That serendipitous discovery prompted a systematic develop-

men t of other form ulations and the f inal selec tion of the d isp lacement extrapolation

formulation.

The in terpretation of staggered solu tion proced ures from the viewpoint of control

theory emerged in final form as this report was being prepared. This interpretation is

deemed important for a variety of reasons :

• The effects of the predictor can be incorporated into differential—difference

equations , thus isolating the effects of the integration method. (The latter

can in fac t be included , if desired , by adjoining to the characteris tic

de terminant terms resul ting f r om a Lap lace— transformation of the integration

operator [13].)

• A large body of con trol theory techniques , such as frequency bandwid th redu-tion ,

damp ing augmentation , et c . ,  can be app lied to the stabilization of the system in

transform space , and such remedies rever ted to the time domain and in terpre ted

in terms of computational procedures ; see, for  example , [14, 15).

• A block representation , such as the one shown in Figure 5, provides a convenient
framework for setting up parameter studies using a digital or analog computer.

• The interpretation is app licable to general classes of coup led f ield problems ,

rather than being confined to fluid—structure interaction analysis.
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Wi th regard to the last of these , there is presently a growing interest in the application of

computerized analysis methods to a host of problems that  are modeled throug h coup l e d — f i e l d

evolutionary equations arising in geomechanics , biomechanics , thermoelasticity and

magnetohydrodynamics , to cite only a few. Staggered solution procedures appear parti-

cularly attractive when software modules (analyzers) are available for processing the

individual uncoupled problems. These modules can be connected to form a serially—

exe cutable “analyzer  network ” through interfacing mechanisms based on the prediction of

appropriate subsets of the complete solution vector. Stabilization of these mechanisms

a t the govern ing ODE level is mos t e f f e c tive fo r  avoiding “delayed feedback” instability.

Once satisfactory stabilized formulations are synthesized , accuracy and imp lementation

considerations can be used to select the most desirable formulat~ on and associated extra—

polation formulas.
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II.
APPENDIX A

DERIVATION OF MODEL EQUATIONS

Consider the following form of the homogeneous system (2)

M + K u  = - T A4

(A—l)

~~~~~ 
c~~~ q = p c A T

T
~~l

in which B = A M~
••1 

A . Equations (A—l) are obtained upon setting D = 0 (no structural

damping) and premultiply ing the fluid equation by ~T M~
’ = A ; the latter operation

makes the coupling matrices in the right—hand side of (A—l) the transpose of one another.

The symmetric algebraic eigenproblems associated with the left—hand side of (A—l) are

~~~~~~ M + K) u~ = 0, i = 1, ... n
(A-2)

( X ~~~~+~~ ) q ~ = 0,

The u1 are the ~~~ structural modes (also called in vacuo modes) pertaining to the

undamped natural frequencies ~~ . The q .  are f lu id  boundary modes associated wi th the

pressure—decay exponents = p 2. i . . (These fluid modes are discrete analogs of the

eigenfunctions of the added mass tensor associated with the Laplace equation , subjec t to

appropriate orthonormality conditions with respect to surface area [161.) In accordance

with (A—2), we introd uce the transformations

- t
ii = S w ;  q = F g  (A-3)

where the matr ices S and F are formed wi th  the d ry—st ruc tu re  and fluid—boundary modes ,

respectively ,  lined up as columns of uni t  length,  and the vectors w and ~ collect the

associated mode amplitudes (general ized coordinates) . The transformed system (A— l ) is then

~s~~
_ + ii.s

~~ 
= -

~~
T

I~~ L &  = -
~~~~~~

(A—4)

a g  + ,.ck~~ 
= ~~c F T A T T

S~~~~~ p c U T
w

where rn , , ~~ and ~~, are d iagona l  matrit& ” ~ t g e n e r a l i z e d  q u a n t i t i e s :

I
A-I

I
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= s~~~s ]S S K S

= F~~ A F  (A-5)

b = F
T

B F  = a (F
T M F )

_l
a = a m

_l
~~

Al though the lef t side of (A—4) is uncoup led , each dry structu ral  mode will , in general ,

be coup led to each fluid boundary mode through the right—hand side terms . Consequently, for

each mode j~3~ u . , q .  , we obtain a two degree—of—freedom system in the associated gen-

eral ized coordinates w . and g.
1 3

= ~~~~~~~~~~S1 1 Si i 13 3 3
(A—6)

a. g. + p c b . g. = p c a .

In (A—6) , the are modal coup ling coef f ic ien ts  between the i—th s t ruc tura l  mode and

the j — t h  f luid boundary mode , i. e . ,

T T
h
i~ ~~~~~~~~~~

ij 
= = 

T 

= 

T 

(A—7)

~1 q
~ ~

where = u~ T . (A—8)

We will now show that  ~ 1 if all entries of the s t ruc tu re—to—flu id  grid

transformation matrix are nonnegative (a restriction that can always be met by using

appropriate “area—lump ing ” schemes). Equilibrium of forces normal to the contact surface

demands that the sum of entries , of each column of be u n i t y :

n

t~~g = 
~~ I t

1(~ 
= 1 (A—9)

Hence

2 
= 

~ 
( ~~ I t kl 

~ 

2 
= 1 (A-b )

Using the norm inequal i ty  x II y II , we can easily show that  II 2 ~

A-2

- -- .~~~~~ - -
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t Now from (A— i )  we obtain

~~~ 
~~~ 

- 

~~~~ 
A = 0 (A-il)

As is positive definite and is not identically zero , it follows that  the vector in

parenthesis must be orthogonal to ~ q. . Premultiply ing tha t vec tor by and solving
for  ~,. , we obtain the desired result

1~3

T

~ij  
= 9_ i 

= s-~ ~~ ~ 1 (A—i2)
9j ij

Eq. (A—l2) indicates that  sett ing = 1 in (A—6) implies a conservative assump-

tion on the modal coupling , which is the essential source of stability d i f f iculties in the

staggered solution procedures. The worst modal coupling case , i.e., 
~ ij 

= 1 occurs when

both structural and fluid boundary modes coincide , as in the case of brea thing motions of a

submerged spherical shell. Assuming identical surface grids for this case, we have

and = 1 .

- t
A-3

~ 

~~~~~~
~~~~~~~~~~ _ _ _ _ _
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APPENDIX B

SUBMERGED SPHERICAL SHELL

To get an idea of the range of values assumed by the various parameters  that  appear

in the study of the staggered solut ion pr oced ures, it is instructive to study a closed , thin
spherical shell submerged in an infinite fluid. The dry—structure and fluid—boundary modes

for the continuum problem coalesce and can be analy tically expressed in terms of Legendre

pol ynomials in cos e , 0 being the meridional angle. An analysis of the modal spectrum

[17] per taining to axisymmetric modal motions with n circumferential waves gives for the

generalized structu ral mass, sti f f ness , f lu id  mass and contac t areas ,

m = 4iip tr2 [1 + n (n + 1)C
2

J 1(2 n + 1)

_2
k m wsn sn sn

(B—i)

m
f 

= 4irp r3 / [(n + 1) (2n + 1)]

a
n 

= 4n r~ / (2n + 1)

where p , t and r are the shell densi ty,  thickness and radius , respectively, i

denotes modal natural frequency [not to be confused with the reduced frequency a defined in

(Sb)) and 
~ 

are ra tios of tangential to radial  modal ampli tudes , g iven by [18, Ch. 101

= (1 + v) / [—
~~~~ + n2 + n + (1 - v)] (B-2)

where v is Poisson ’s ratio, and the 
~ 

are dimensionless in—vacuo natural frequencies

normalized to d r  , c being the pla te velocity for the shell material). The

dimensionless parameters 1 , a and ~i can be obtained from Eqs. (5), in which 2. = r

as

= [1 + n (n + 1) ~~) p t/pr)

C = ~~~a c / cm n S

p
n

Values of ~ , a and p are comp iled in Table 7 for a steel shell in water (c /c~~~3.53 ,

p / p 7 .67 , v = 0.30) wIth a thickness—to—radius ratio of 0.01. The lower (upper)

ei gen freq uency branch embodies predominantly I lexural (membra.-ie) motions.
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Note that the lowest values of these parameters are determined by phys ical and gecmetric

charac teristics of the fluid—structure problem , whereas the high values are determined by 3truncation of the modal spectrum . For the discrete model , the largest values are essentiall y

functions of the mesh fineness. These considerations should be helpful in the order—of—

magnitude assessment of the parameter value range for more complex problems .

TABLE 7. Val ues of ~ , a , and p f or Some Axisymme tr ic
Modes of a Steel Shell in Water with t/r = 0.01

Mode Order

Branch n an n n n n

Lower 1 1.000 0 0.230 0 2

2 0.270 0.701 O .ilO 0.821 3

3 0.123 0.830 0.091 0.882 4

n>>1 ~-2 -~1—1/2n ~~O.O77 O.977 n + 1

Upper 0 0 1.61 0.077 0.977

1 —0.500 1.98 0.115 2.37 2

2 —0.616 2.72 0.251 4.81 3

3 —0,680 3.64 0.502 9.10 4

n~>l “—nfn+ l =..(n2 + “~O .O77n 2 
‘.~O.98n 2 

n + I

~~~~~ E~~~~~I~:•_ _ _ _  TJ1TT I~ ~~ T.
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APPENDIX C

A STABILITY ANALYSIS OF THE PIE FORMULATION

Let us write (6) and (7) as

~ ~~~~~ 
— &J(z

k
) = 0, k = 1 , — — , m . (C—i)

where

~ ~~n-k~ 
= 
~~~~

0
k ~~-k 

‘ ° 
~~n-k~ 

= 
~ k ~~-k 

(C-2)

and the PIE model equations in Table 2 as

0 1 0 —l 0 0 0

~ 0 0 Z + 1 —p Z
n 

= 0 (C—3)

0 0 1 0 0 p

where Z = [k , x, y j T

For illustrative purposes , introduce the first—order extrapolator [see (35) and

Table 4J .

= 2k — x  (C—4)
n—i n-2

combining (C—l) through (C—3), we ob tain

0 1 0 — 1 0  0 0

~ 0 0 P(Z n_k) + ~ 1 a2 —p o(Z
l k
) = cS 0 (C—5)

0 0  1 0 0  i~

Substi tution of (38) into this  equation then yields

0 1 0 — l 0 0

0 p(A ) + ~l 0 a2 —p o (A ) -~ n—m = 0 (C—6) - 
-

0 0 1 _ .a _ i~.,o p

C—i 
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where

p (A )  = 
~~~~~

a
k 

A
m_k 

, a ( A )  _
~~~~~0k

A (C—7)

Now a nontrivial solution of (C—6) exists only when

0 1 0 —l 0 0

det ~ 0 0 p(A ) + S 1 a2 —p a (A) = 0 (C—8)

0 0 1 _
~~~~

_ _ i
~
. , 0 , p

from which we ob tain the following charac teristic equation

p
3

(A )  +~~ p p  (A) o (A) 
[~

(A) _
~~2~~(A ) (2A — l) / A 2]

~~~~~ a
3 (A ) + ~~~~~~

2
~~A) p (A) + ~ p2 (A ) a (A )  + ~~~~~~~ p (A )  o2 (A)  = 0 (C-9)

Therefore , the search for  uncond it ional stability is reduced to de termin ing the comp le te

absence of any root of (C—9) with magnitude greater than unity for all possible values of

wh , ph , and h/~ in combination with the time integrator and extrapolator used. The

results of such determinations are summarized in Table 5.

C—2
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ATTN: DT-1C U.S . Army Comunications Cmd .
ATTN : DT-2, Wpns. & Sys. Div. ATTN: Tech. Lib.

Director Director
Defense Nuclea r Agency U.S. Army Engr. Waterways Exper. Sta.

AIIM: 0051 ATTN: W. Flathau
ATTN : TISI ATTN: J. Strange

2 cy ATTN : SPSS AIIM: Tech. Lib .
3 cy ATTN : TITL

Coninander
Chairman U.S. Army Mat. & Mechanics Rsch. Ctr.
Dept. of Defense Explo. Safety Board ATTN : R. Shea

ATTN : DD/S&SS ATTN: Tech. Lib.

Comander Comander
Field Cormiiand , DNA U.S. Army Materiel 0ev. & Readi ness Cmd .

ATTN: FCPR ATTN : DRXAM-TL
ATTN : FCPR , Colonel J. Hi ll

Comander
Director U.S. Army Mobilit y Equip. R&D Ctr.
Interser vice Nuclear Weapons School AIIM: DRDME-WC

ATTN: Document Control
Comander

Director U.S. Army Nuclear & Chemical Agency
Joint Strat. Tgt. Planning Staff AIIM: Library

AIIM: STINFO Library
Comandant

Chief U.S. Army War College
Livermore Divis ion , Fld. Conniand , DNA ATTN : Library
Lawrence Livermore Laboratory

ATIN : FCPRL DEPARTMENT OF THE NAVY

Comandant Chief of Naval Mater ial
NATO School (SHAPE) ATTN : MAT 0323

ATTN : U.S. Documents Officer
Chie f of Naval Operations

Under Secretary of Def. for Rsch. & Engrg. ATIN: OP 981
ATTN : S&SS (OS) ATIN: OP O3EG
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Ch ief of Naval Research Commander
AIIM: Code 715 . Naval Surface Weapons Center

2 cy AIIM: Code 474, N. Perrone Dahigren Laboratory
ATIN : Technical Library

Officer-in-Charge
Civil Engineering Laboratory Commanding Officer
Naval Construct ion Battalion Center Naval Underwater Systems Center

AIIM : R. Odello AIIM: Code EM , J. Kal inowski
ATIN : Technical Library

Commander
Commander Naval Weapons Center
Dav id W. Taylor Naval Shi p R&D Ctr. AIIM: Code 533, Tech. Lib.

ATTN : Code 177
AIIM: Code 2740 , Y. Wang Command ing Officer
AIIM : Code L42—3 , Library Naval Weapons Evaluation Facility
AIIM : Code 174 AIIM : Technical Library
AIIM: Code 17
ATIN : Code 1740.1 Director
ATIN : Code 1740.5 Strategic Systems Project Office
AITN: Code 1740.6 AIIM: NSP-272
AIIM: Code 1962 AIIM: NSP-43, Tech. Lib.
AIIM: Code 19
AIIM : Code 1903 DEPARTMENT OF THE AIR FORCE
AIIM : Code 11

2 cy AIIM: Code 172 AF Geophysics Laboratory , AFSC
AIIM: SUOL , Rsch. Lib.

Comma nder
Naval Electronic Systems Command AF Institute of Technology , AU
Naval Electronic Systems Cmd . Hqs. AIIM : Library , AFII Bldg. 640, Area B

AIIM : PME 117—21A
AF Weapons Laboratory, AFSC

Commander AIIM : SUL
Naval Facilities Engineer ing Command
Headquarters Commander

AIIM : Code 09M22C ASD
AIIM : Technical Library

Commander
Naval Ocean Systems Center HQ USAF/IN

AIIM: Technical Library AIIM: INAIA

Superintendent (Code 1424) Commander
Naval Postgraduate School Rome Air Development Center , AFSC

AIIM: Code 2124, Tech. Rpts . Librarian AIIM: EMILD , Doc. Library

Director Commander in Chief
Naval Research Laboratory Strategic Air Command

AIIM: Code 840, J. Gregory AIIM: NRI-SIINFO , Libra ry
AIIM: Code 2600 , Tech. Lib .

3 cy AIIM: Code 8403A, G. O Hara DEPARTMENT OF ENERGY

Commander Department of Energy
Naval Sea Systems Command Albuquerque Operations Office

AIIN: Code 03511 , C. Pohler AIIM: Ooc. Con. for Tech. Libra ry
AIIM: ORD-91313, Li b.

Department of Energy
Commander Divis ion of Headquarters Services
Naval Ship Engineering Center Library Branch G-043

AIIM: NSEC 6110.01 AIIM: Doc. Con. for Class. Tech. Lib.
AIIM : Technical Library
AIIM: NSEC 6105 Department of Energy
ATIN : NSEC 61200 Nevada Operations Utfice
AIIM: NSEC 6105G AIIM: Doc. Con. for Tech. Library
AIIM: 61O5C1

Un iversity of California
Officer- in-Charge Lawrence Livermore Laboratory
Naval Surface Weapons Certer AIIM: Doc. Con. for Tech . Info. Dept.

3 cy AIIM: Code WA5O I , Navy Nuc. Prgms . Off.
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Los Alamo s Scientif ic Laboratory Institute for Defense Analyses
AIIM: Doc. Con, for Reports Lib. AIIM: IDA Librarian , R. Smith

Sand ia Laboratories Kaman AviDyne
Livermore Laboratory Division of Kaman Sciences Corp.

AIIM : Doc. Con. for Tech. Lib. AIIM : Tech. Lib.
AIIM: F. Criscione

Sand ia Laboratories AIIM: G. Zartarian
AIIM: Doc. Con, for 3141, Sandia Rpt. CoIl.

Kaman Sciences Corp.
OTHER GOVERNMENT AGENCY AIIM : Library

Department of the Interior Lockheed Missiles & Space Co., Inc .
Bureau of M ines AIIN: Tech. Lib.

AIIM : Tech. Lib .
Lockheed Missiles & Space Co., Inc .

DEPARTMENT OF DEFENSE CONTRACTORS AIIM : Tech. Info. Ctr.
ATIN : I. Geers

Aerospace Corp. AIIM : K. Park
ATIN: Tech. Info . Services AIIM: C. lelippa

AIIM: J. DeRuntz
Agbabian Associates

ATIN : M. Agbabian University of Maryland
Dept. of Civil Engineering

Avco Research & Systems Group AIIM : B. Berger
AIIM: A83O , Research Lib.

Merritt CASES , Inc.
Battelle Memorial Inst itute AIIM: Tech. Lib.

ATIN : Tech. Lib.
Nathan M. Newmark

8DM Corp. Consulting Engineering Services
AIIM: Tech. Lib. AIIM : N. Newmark

Boeing Co. Physics International Co.
AIIM: Aerospace Library ATIN : Doc. Con, for Tech. Lib.

Calspan Corp. Polytechnic Institute of Mew York
AIIM : Tech. Lib . AIIM: J. Kiosner

Cambridge Acoustical Assoc., Inc. Pacifica Technology
AIIM : M. Junger ATIN: J. Kent

Civil /Nuclear Systems Corp. R&D Associates
ATIN : I. Duffy ATIN: Tech. Lib.

Columb ia University Science Applications , Inc.
Dept. of Civil Engineerinri AIIM: Tech. Lib.

ATIN: F. Dimagg io
AIIM : H. Bleich SRI International

AIIM : B. Gasten
University of Denver ATIN : G. Abrahamson
Colorado Seminary
Denver Research Institute Systems, Science & Software, Inc.

AIIM: S~~. Officer for F. Venditti ATIN: Tech. Lib.

EG&G Washington Analytical Services Center , Inc. Terra Tek , Inc.
AIIN: Tech. Lib. AIIM : Tech. Lib.

General Dynamics Corp. Tetra Tech , Inc.
Electric Boat Div~Slon AIIM: Tech. Lib.

AIIM : L. Chan AIIM: li-San Hwang

Gene ral E lec t r i c  Co. TRW Defense & Space Sys. Group
TEMPO Center for Advanced Studies ATIN: Tech. Info. Center

AIIN: DASIAC
Weid l i nger Assoc., Consulting Eng ineers

III Research Institute AIIM : M. Baron

~ AIIM: Tech. Lib.
We idlinger Assoc., Consulting Engineers

AIIN: J. Isenberg
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